Seat	No	
Scat	140.	The state of the s

AD-111

April-2015

B.Sc., Sem.-VI

Mathematics

MAT-308 (Analysis-II)

Time: 3 Hours]

[Max. Marks: 70

Instructions: (1) All the **five** questions are compulsory.

- Each question is of 14 marks.
- 1. (a) Prove:

(i)
$$f \in R[a, b] \Rightarrow U(f, P) - L(f, P) < \varepsilon$$

OR

$$U_p(f) - L_p(f) < \varepsilon$$

where, P is any partition of [a, b].

(ii)
$$f, g \in R[a, b]$$
 then $f + g \in R[a, b]$ and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.

- Prove that if f is a continuous function on [a, b], then it is Riemann integrable on [a, b]. Is the statement $f \in R[a, b] \Rightarrow |f| \in R[a, b]$ true? What about its converse? Explain.
- (b) Prove: If f is continuous on [a, b] and $F(x) = \int f(t)dt$ then F'(x) = f(x) for all $a \le x \le b$. Give suitable name to this result.

OR

State the second mean values theorem for integrals. Is it possible to find $c \in (0, 1)$ such that the functions $f(x) = (1 + x^2)^{\frac{1}{2}}$ and g(x) = 2x satisfy the second mean value theorem on [0, 1]? Justify.

2. (a) State and prove the limit form of the comparison test for the convergence of the series. Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n(n+1)}{3n^3 + 2n^2 + 4n - 7}$

OR

(a) Prove the absolutely convergent series is convergent but the converse is not necessarily true. Discuss the absolute convergence of the series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \, \frac{(\sqrt{n+2} - \sqrt{n-2})}{\sqrt{n} + 3}$$

(b) State Cauchy's condensation test and hence, prove that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges for p > 1 and it diverges for $p \le 1$ also, examine the convergence of the series $\sum_{n=3}^{\infty} \frac{1}{n \log n(\log(\log n))^2}$.

OR

- (b) (i) If Σa_n is a divergent series of positive terms then show that the series $\Sigma \frac{a_n}{1+na_n}$ is divergent.
 - (ii) If Σa_n is a convergent series of positive terms then show that the series $\Sigma \frac{\sqrt{a_n}}{n}$ is convergent.
- 3. (a) If the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge absolutely to A and B respectively then prove that their Cauchy product series $\sum_{n=0}^{\infty} c_n$ is convergent and if C is the sum of Cauchy product then C = AB.

OR

(a) Define rearrangement of a series. If the series $\sum_{n=0}^{\infty} a_n$ is a series of non-negative terms converges to A then prove that every rearrangement of the series $\sum_{n=0}^{\infty} a_n$ converges to the same sum A.

- (b) Define Power series centered at x_0 . Discuss the convergence of the following power series stating interval of convergence:
- $\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$
 - (ii) $\sum_{n=0}^{\infty} n! x^n$
 - (iii) $\sum_{n=0}^{\infty} (-1)^n \frac{(x+1)^{2n}}{(n+1)2^n}$

OR

(b) Prove : If $\int_{a}^{\infty} f(x) dx$ converges absolutely, then $\int_{a}^{\infty} f(x) dx$ converges.

Test convergence:

- (i) $\int_{1}^{\infty} \frac{1}{e^x + 1} \, \mathrm{d}x$
- (ii) $\int_{-\infty}^{0} \frac{\mathrm{d}x}{4+x^2}$
- 4. (a) State Taylor's theorem. Using Lagrangian form for the remainder, for any real x show that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$

OR

- (a) For any real x, obtain Mac laurin series expansion of $\sin x$ hence, deduce the series for $\sin(1)$.
- (b) Obtain the power series solution of the differential equation (1 x)y' 2y = 0 with the initial condition y(0) = 4.

OR

(b) State Binomial series theorem. Does this series converge to $(1 + x)^{\alpha}$ for $x \in [0, 1)$? Explain.

5. Attempt any seven:

- (i) State the first mean value theorem for the R-integrable function.
- (ii) Let a function f(x) = x, $P = \left\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\right\}$ be a partition of [0, 1] then compute U[f; P] and L[f; P].
- (iii) Discuss the absolute convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.
- (iv) State the Ratio test for the convergence of the series.
- (v) Find the Cauchy product of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ with itself.
- (vi) Test the convergence of $\int_{0}^{\infty} \frac{1}{3^{x}} dx$
- (vii) State the series of $\cos x$, for any real x.
- (viii) Examine the validity of the statement $ln 2 = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$
- (ix) If $y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$ and y(x) = -2y'(x) then obtain relation among the coefficients.
- (a) State Toylor's theorem. Using Lagrangian form for the remainder, for any real state show there $e^{-\frac{2}{3}} + \frac{e^2}{2!} + \frac{e^n}{3!} + \cdots + \frac{e^n}{n!} = 0$ for $e_{n,n} = e^{-\frac{n}{3}} + e^{-\frac{n}{3}} + \cdots + \frac{e^n}{n!} = 0$
- (a) For any real x, obtain Mac laurin series expension of sin x hence, deduce the
- (b) Obtain the power series solution of the differential equation (1 x)y' 2y = 0 with the initial condition y(0) = 4.
- (b) State Binomial series theorem. Does this series converge to (1 ± x)^o for x ∈ [0, 1)?
 Explain.